Extensions 1→N→G→Q→1 with N=C5xC2.C42 and Q=C2

Direct product G=NxQ with N=C5xC2.C42 and Q=C2
dρLabelID
C10xC2.C42320C10xC2.C4^2320,876

Semidirect products G=N:Q with N=C5xC2.C42 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC2.C42):1C2 = C10.(C4:D4)φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):1C2320,302
(C5xC2.C42):2C2 = (C22xD5).Q8φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):2C2320,303
(C5xC2.C42):3C2 = C5xC23.7Q8φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):3C2320,881
(C5xC2.C42):4C2 = C5xC23.34D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):4C2320,882
(C5xC2.C42):5C2 = C5xC24.C22φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):5C2320,889
(C5xC2.C42):6C2 = C5xC23.Q8φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):6C2320,897
(C5xC2.C42):7C2 = C5xC23.11D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):7C2320,898
(C5xC2.C42):8C2 = (C2xC20):5D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):8C2320,298
(C5xC2.C42):9C2 = (C2xDic5):3D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):9C2320,299
(C5xC2.C42):10C2 = (C2xC4).20D20φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):10C2320,300
(C5xC2.C42):11C2 = (C2xC4).21D20φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):11C2320,301
(C5xC2.C42):12C2 = (C2xC20).33D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):12C2320,304
(C5xC2.C42):13C2 = (C2xD20):C4φ: C2/C1C2 ⊆ Out C5xC2.C4280(C5xC2.C4^2):13C2320,9
(C5xC2.C42):14C2 = (C2xC4):9D20φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):14C2320,292
(C5xC2.C42):15C2 = D10:3(C4:C4)φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):15C2320,295
(C5xC2.C42):16C2 = C10.55(C4xD4)φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):16C2320,297
(C5xC2.C42):17C2 = D5xC2.C42φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):17C2320,290
(C5xC2.C42):18C2 = C22.58(D4xD5)φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):18C2320,291
(C5xC2.C42):19C2 = D10:2C42φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):19C2320,293
(C5xC2.C42):20C2 = D10:2(C4:C4)φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):20C2320,294
(C5xC2.C42):21C2 = C10.54(C4xD4)φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):21C2320,296
(C5xC2.C42):22C2 = C5xC22.SD16φ: C2/C1C2 ⊆ Out C5xC2.C4280(C5xC2.C4^2):22C2320,132
(C5xC2.C42):23C2 = C5xC23.8Q8φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):23C2320,886
(C5xC2.C42):24C2 = C5xC23.23D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):24C2320,887
(C5xC2.C42):25C2 = C5xC23:2D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):25C2320,893
(C5xC2.C42):26C2 = C5xC23:Q8φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):26C2320,894
(C5xC2.C42):27C2 = C5xC23.10D4φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):27C2320,895
(C5xC2.C42):28C2 = C5xC23.4Q8φ: C2/C1C2 ⊆ Out C5xC2.C42160(C5xC2.C4^2):28C2320,900
(C5xC2.C42):29C2 = C22:C4xC20φ: trivial image160(C5xC2.C4^2):29C2320,878

Non-split extensions G=N.Q with N=C5xC2.C42 and Q=C2
extensionφ:Q→Out NdρLabelID
(C5xC2.C42).1C2 = (C2xDic5).Q8φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).1C2320,285
(C5xC2.C42).2C2 = (C22xC4).D10φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).2C2320,289
(C5xC2.C42).3C2 = C5xC42:8C4φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).3C2320,883
(C5xC2.C42).4C2 = C5xC42:5C4φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).4C2320,884
(C5xC2.C42).5C2 = C5xC23.63C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).5C2320,888
(C5xC2.C42).6C2 = C5xC23.83C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).6C2320,901
(C5xC2.C42).7C2 = C5xC23.84C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).7C2320,902
(C5xC2.C42).8C2 = (C2xDic5):Q8φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).8C2320,283
(C5xC2.C42).9C2 = C2.(C20:Q8)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).9C2320,284
(C5xC2.C42).10C2 = (C2xC20).28D4φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).10C2320,286
(C5xC2.C42).11C2 = (C2xC4).Dic10φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).11C2320,287
(C5xC2.C42).12C2 = C10.(C4:Q8)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).12C2320,288
(C5xC2.C42).13C2 = C4:Dic5:C4φ: C2/C1C2 ⊆ Out C5xC2.C4280(C5xC2.C4^2).13C2320,10
(C5xC2.C42).14C2 = (C2xC20):Q8φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).14C2320,273
(C5xC2.C42).15C2 = C10.49(C4xD4)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).15C2320,274
(C5xC2.C42).16C2 = C2.(C4xD20)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).16C2320,280
(C5xC2.C42).17C2 = C4:Dic5:15C4φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).17C2320,281
(C5xC2.C42).18C2 = C10.52(C4xD4)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).18C2320,282
(C5xC2.C42).19C2 = Dic5.15C42φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).19C2320,275
(C5xC2.C42).20C2 = Dic5:2C42φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).20C2320,276
(C5xC2.C42).21C2 = C5:2(C42:8C4)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).21C2320,277
(C5xC2.C42).22C2 = C5:2(C42:5C4)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).22C2320,278
(C5xC2.C42).23C2 = C10.51(C4xD4)φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).23C2320,279
(C5xC2.C42).24C2 = C5xC23.31D4φ: C2/C1C2 ⊆ Out C5xC2.C4280(C5xC2.C4^2).24C2320,133
(C5xC2.C42).25C2 = C5xC23.65C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).25C2320,890
(C5xC2.C42).26C2 = C5xC23.67C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).26C2320,892
(C5xC2.C42).27C2 = C5xC23.78C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).27C2320,896
(C5xC2.C42).28C2 = C5xC23.81C23φ: C2/C1C2 ⊆ Out C5xC2.C42320(C5xC2.C4^2).28C2320,899
(C5xC2.C42).29C2 = C5xC42:4C4φ: trivial image320(C5xC2.C4^2).29C2320,877
(C5xC2.C42).30C2 = C4:C4xC20φ: trivial image320(C5xC2.C4^2).30C2320,879

׿
x
:
Z
F
o
wr
Q
<